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B Abstract. The non-existence of exact difference triangles of order
greater than five is demonstrated. ‘

1. Intreduction. For any positive integer 7> 2, let
Ve={(E)11<j<i<mni.

An integral-valued function X on V,, is called a difference triangle .
~ of order # if the following conditions are satisfied.

(i) X is injective,
(i) 1X(G+1,7)) — X(( +1,7+1))i =X((z,7) for
1<ji<i<m-—1.

X is said to be exact if 1<X((i,7)) < LTn(r+ 1) for all (4,7) €Va.
We write 2;,; for X((,7)). The diagram below is called the
graph of X. ' ‘ ’

Tg,1 Ls,2 L33
X2,1 L2,2
Z1,1

“Although differenéé triangles are abundant, only a handfal of
them are exact. Examples. ’
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3 2 3 1
1 2
6 25 26 5 6 1 4 164
43 11 5 3 5 2
1 3 2 3
61108 61018 83109 8103 9
592 497 571 276
47 ' 5 2 2 6 5 1
ERE 4 4
13315146
1012 1 8-
2117
9 4 ~
5

_ Up to reflection, the - graphs exhibited above exhaust all exact‘
difference triangles of order not greater than five. We erl ShOW that
there exist no exact difference triangles of order greater than five.
This solves the general pool-ball problem posed. by M. Gardner [1].

2. b; and s;. From now on let X be an exact drfference tri-
angle of order #>4. Let

Sn= {172:"'7’3}7
) an {'12‘73(”"_ 1)—]-'].:0917“'"”}’
Ry = {41, Zr2 -, Trnd, B=1,2,-- R

Note that S,nB,=@ and [6—¥|€S, if b and ' are distinct
elements of B,. - . S

For each %, 1 <k<#, we now choose 2 parr of numbers bk and
s from R, by the following inductive method.
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() b1 =si= 11
(i) if b;,s;€R;, 1 <j<mn—1, have already been chosén_, then

b; = xj» for some kb, 1<E<j Let

bj+i = max {xj+1,h7 xj+1,h+1}y

CSjy1 ™ min {$j+1,h, $j+1,h+1}-

“LEmMMA 1. () bi<<b; if 1<i<j<mn.

(i) Sy = {51, 82", Sa}.
(lii) ﬁ (RJHS,,) =1 for j:—_— 1,2,"',%.'

Proof. By way of defining &: and s;, we have brs1 — Sp+1 = bt
for 1< E<n—1. Suppose i<j. Then

i1 ic i1 v
Z brv1 — Z Sp+1 = Z be.
k=i ) k=i ; k=£ ]
So ‘
bj :b; + Z sy > b;.
. - k=il )
In particular, we have
b, = by +. Z Sy = Z Sp.
. k=2 k=1
The si’s are pairwise distinct positive integers. Thus
%n(n—&—l)?_b,,-—- S s>1424 -0 +n=%:n(n+ 1).
. . k=1
Consequently, b, = % n(n+ 1), Sy= {si,5,---,5}, and #(R;nS,)
= ﬂ: {Sj} = 1.

LeMMA 2. For ell j, s; = min R; and b; = max R;:

~ Proof. Since R;nS, = {s;}, all elements of R; except s; belong
to Spwins — S, and are >n>s;. Therefore s; = minR;.
We have already seen -

b, _ —;-n(n + 1) = max R,.



194 G.J. CHANG, M.C. HU, K. W. LIH, AND T.C. SHIEH [June.

Now suppose j<<# By induction we may assume ¥ < b;+1 for all
YER;+1. Let x be an arbitrary element in R;. There are
#;+1, Vj+1 € R;+1 such that

X = %j+1 — Vj41 S bj+1 — 8j+1 = bj.

Hence b; = max R;.

LEMMA 3. For all j,56; < % §(21—j+ 1).

Proof. b =b, — Z Sk

k= ]+1

S%n(n+1~) —(1+2+ - (B—3))
=Ljen—j+1.

3. Distributicn of B,. Assume that, for some 2<% — 1, there
exists {xs,:, &5, j} CB,, Where i<<j. Then

mln Xr41,2, Lri1,i+1) €Sy,

{
min {Tz+1,7, Lar1,;+13 €Sy,
{Tr+1,0, Trr1,141} € B,
max {Lr+1,j, Lr+1,j+1} € B,

Since # (R:+1nS,) =1, we must have
Min {@re1,1, L, 141} = Min {Xpa1, 5, Thea,je1].

This can happen only when j=i + 1. Thus Zi+s,;+1 = ZTeer,; ESp.
We also have " Zr1,; €B, and Zp41,;42:€B,. This latter fact would

contradict the result just obtained unless %+ 12— 1, ie.
¥ 4 =" — 1.

The above discussion gives us the following
LemMa 4. (i) #(RinB,) <1 if b<n-—2;

. (11) ﬁ: (Rn—lan) Sz,
(iii) if 4 (R,-yn B,) =2, then there is i<n— 1 such that
Ly :14+1 € Sn and ‘

{Zy-1,1, Lu-1,i41, Lu,is Ln,ive} C By

Two observations about the top row R,:
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(1) If {@4 i, Xy j+1} C By, then Zu—y,; = |y, j — 4y, j+1] €S, Thus
there is no {Z4,:, Lu 141, Tu,j, Tu,jr1l € B, with 1<i,j<n—1.

(2) If {x4;, Xuj+e} € B, and X, j+1 ¢ B, then xy-g,;
= [&,,; — Xy, j+2] €S,. Thus there is no {x,,:, Ly, i+2, Tu,j, Ln, j+2} C By
with 1<i#j<n-—2. |

From (1) and (2), it follows easily that

LemMMA 5. # (R,nB,) < % (n +5).

Now we assume temporarily # (R,-1nB,) = 2. So the situation
described in Lemma (iii) does happen. In the graph of X, &; and
s; are adjacent when j>1. Therefore b, = Z,;: Or by = Ty i+
- Without loss of generality, we may assume 8, = &4 ;+2. Then b,
=B, — Sy = Ly-1,1+1. Since Sy—1 is adjacent to by-y and L,-1,: ¢S,
we have S,-; = Zy-1,;+2 and then L, ;i3 =08, — S,—1€B,. If we let
* stand for a position occupied by an element of B,, then a part

of the graph of X appears as follows.

* Sy = Ly, i+1 b, = Ln,i+2 *
*® bn-'l = Tu—1,i+1 Sa—-1

Sn_—z

Now let #=4+n(n—1)—1. If #€R, for some kSn——Z,
then, since b,¢ Ri+;, # must lie right below a certain element of
B, and a certain element of S,. The argument used in the proof

of Lemma 4 can be adapted to show
LEMMA 6. # (Ren(B,uin})) <1 for b<n—2.

If #=22,~1,,€ER,~1, then max {Z,,z, Lur+1} 7= bs. The number
min {2, 5, % s+1}, Which is not s, must belong to S, This is
absurd. So #¢R,-;. Next assume that # =2,:€R,. Among all
elements of R,NnB,, let b=z, ; beclosest to # in the graph of X.
Clearly b5#b,. If |j— k|l =1, then b— #5#s,~1 lies in R,—1NS,.
If |[j—F%| =2, then b— #5552 lies in R,-nS, Both are im-

possible. Summarizing these results, we obtain
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LeMMA 7. Let u= +n(n—1) —1 and 4 (R,,—mB,,) = 2."Then
(i) #¢R,-1; :
- (ii) if w€R,, thew u must be sopamted from ‘R,nB, by at
least two elements of R, B oo

4. Main theorem. Now we are ready to prove the main result.

TueoreM. Let X be an exact difference triangle ‘of order n.
Then nS 5.

Proof. Let p be the smallest pos1t1ve integer such that b, >
Y nln—1). By Lemma 3, : :

Ton—p+D2b> Jun—1).

We have
[V o o> (n —p)"’ + (n p)

On the other hand, we know

= > # (Rn By)
s k=g B .

%(n+5)+2+(n p—1).

Thus
2) . 3n—p) +5=2m
(1) and (2) together yield

(22— p)2— 2( — p) —5=<0.

If follows that #—p<3 and 2#<3(n—p) +5<14, ie. n<T.

“ For =06 and # =17, we see that # (R,nB,) < the integral
part of % (#+5), i.e. #—3. Now 2= # (R,—1nB,) > (n+1) —
(—3)—(m—p—1) =5~— (n p) > 2. ~Therefore we must have
#»—p=3 and
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$ (R,nB,) =n—3,

# (R,-1nB,) = 2,

# (R,—.nB,) =1,

# (R,—anB,) = 1.
Note that, for # =6 and 7, b,s < % (# — 4) (n + 5) < u
=3 n(n—1) —1. By Lemmas 6 and 7, # must appear on the top
row. Let us count the number of elements in R, Besides the
n — 3 elements of R,nB,, there are. s, #, and at least two other
elements to separate # from R,n B, Thus

n=4§R,>(n—3)+2+2=n+1

This is impossible. Hence #+6 and 7 7. Our theorem is proved.
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